
CodeX Project Rubric - CSTA Standards

Standard Basic Proficient Mastered
Documentation
2-AP-10 Use flowcharts and/or
pseudocode to address complex
problems as algorithms.

Incomplete flowcharts. Flowcharts provided for each process. Flowcharts provided for each process.
Evidence of revisions and
improvements made.

2-AP-13 Decompose problems and
subproblems into parts to facilitate the
design, implementation, and review of
programs.

Code is not organized or readable. Code is sometimes organized into
problems and subproblems in order to
make it organized and readable.

Code is decomposed into problems
and subproblems, making it easy to
follow and read.

2-AP-19 Document programs in order
to make them easier to follow, test,
and debug.

Incomplete documentation. Documentation provided for each
process.

Documentation provided for each
process. Evidence of revisions and
improvements made.

Algorithms and Programming
2-AP-11 Create clearly named
variables that represent different data
types and perform operations on their
values.

No variables; variables not named
appropriately.

Variables used and named correctly in
most instances.

Variables are used and named
correctly in each process as needed.

2-AP-12 Design and iteratively
develop programs that combine
control structures, including nested
loops and compound conditionals.

No loops or conditionals. Loops or conditionals used correctly in
most instances.

Loops or conditionals are used
correctly in each process as needed.

2-AP-14 Create procedures with
parameters to organize code and
make it easier to reuse.

No procedures; procedues not named
appropriately.

Procedures used and named correctly
in most instances.

Procedures used effieciently to
organize code and reused as needed.

2-AP-16 Incorporate existing code,
media, and libraries into original
programs, and give attribution.

No incorporation of existing code. Some incorporation of existing code;
not attributed properly.

Existing code is incorporated and
attributed properly.

Computing Systems
2-CS-02 Design projects that combine
hardware and software components to
collect and exchange data.

No hardware used; hardware does not
collect or exchange data correctly.

Hardware and software components
incorporated; collects and exchanges
data inconsistently.

Hardware and software components
are incorporated; collects and
exchagnes data consistently.

Collaboration
2-AP-15 Seek and incorporate
feedback from team members and
users to refine a solution that meets
user needs.

Team members did not work together;
strengths or suggestions of each
member were not incorporated.

Team members ususally worked
effectively as a team; strengths and
ideas of each member were
incorporated somewhat unequally.

Team members worked effectively; the
strengths and ideas of each member
were incorporated.

2-AP-18 Distribute tasks and maintain
a project timeline when collaboratively
developing computational artifacts.

Unequal contributions from each team
member; project not completed by
deadline.

Somewhat equal contributions from
each team member. Project completed
on time, but may have needed
revisions past deadline.

Team members contributed equally;
project completed on time.

Debugging
2-CS-03 Systematically identify and fix
problems with computing devices and
their components.

Code bugs not identified; little or no
documenation of fixes.

Code bugs mostly identified and fixed;
adequate documentation of fixes.

Code bugs identified and fixed;
extensive documentation of fixes.

Presentation
1B-AP-17 Describe choices made
during program development using
code comments, presentations, and
demonstrations.

All team members are not able to
describe program development and
choices.

All team members are able to explain
most program development and
choices.

All team members are able to
extensively explain program
development and choices, as well as
demonstrate each componenet and
line of code.

